III B.Tech - II Semester – Regular Examinations – JUNE 2023

DESIGN OF STEEL STRUCTURES (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

- 2. All parts of Question must be answered in one place.
- BL Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I				
1	a)	During erection of beam of a steel building,	L2	CO1	9 M	
		a plate of 180 x 20 mm welded to column, is				
		bolted butt connected to the plate of				
		180 x 20 mm welded to the beam. Evaluate				
		the connection strength and also the				
		efficiency of the butt joint.				
		Given M20 bolts of grade 4.6 and Fe410				
		(E250) plates are used. Butt-joint is made				
		using two cover plates each of size 12mm				
		and 6 numbers of bolts on each side.				
	b)	The loads on a floor beam of a commercial	L2	CO1	5 M	
		building are as below.				
		Roof loads: Dead load = 6 kN/m^2 , Live load				
		$= 4 \text{ kN/m}^2$, Roof finish $= 1.5 \text{ kN/m}^2$				
		Determine the design load for:				
		(i) Limit state of strength.				
		(ii) Limit state of serviceability.				
		OR				
2	a)	Two ISF sections 250 mm x 12 mm each	L2	CO1	7 M	
		and 1.5 m long are to be joined to make a				
Page 1 of 6						

		manular of length 2.0 m. Design a hout is int			
		member of length 3.0 m. Design a butt joint			
		with the bolts arranged in the diamond			
		pattern. The flats are supposed to carry a			
		factored force of 350 kN. Assume steel of			
		grade Fe 410 and 20 mm diameter bolts of			
		grade 4.6 to make the connections.			
	b)	Two flats each 300 mm x 8 mm, are to be	L2	CO1	7 M
		joined using 20 mm diameter, 4.6 grade			
		bolts to form a lap joint for a top chord of			
		the steel truss. The joint is supposed to			
		transfer a factored load of 250 kN. Design			
		the joint and determine suitable pitch for the			
		bolts. Assume Fe 410 grade of steel.			
		UNIT-II			
3	a)	Two plates of 16 mm and 14 mm thickness	L3	CO2	7 M
		are to be joined by a groove weld. The joint			
		is subjected to a factored tensile force of			
		430 kN. Due to some reasons the effective			
		length of the weld that could be provided			
		was 175 mm only. Check the safety of the			
		joint. if			
		(i) Single-V groove weld is provided			
		(ii) Double-V groove weld is provided.			
		Assume the plates to be shop welded and			
		grade of steel Fe 410			
	b)	A beam ISLC 300 @ 331N/m is used to	L3	CO2	7 M
		transmit a force of 500kN. The channel			
		section is connected to a gusset plate of			
		8mm thick. Design the suitable fillet weld if			
		the overlap is limited to 350mm. Assume			
		grade of steel Fe 410.			
		OR			

4	a)	Design a suitable longitudinal fillet weld to connect the plates as shown in figure, to transmit a pull equal to full strength of small plate of 12mm thick and grade of the plates	L3	CO2	7 M
		Fe410 and welding to be made in workshop.			
		A 100mm 160mm 160mm			
	b)	A tie member in a truss girder is 250 mm \times 14 mm in size. It is welded to a 10-mm thick gusset plate by a fillet weld. The overlap of the member is 300 mm and the weld size is 6 mm. Determine the design strength of the joint, if the welding is done as shown in figure. What is the increase in strength of the joint, if welding is done all- around? Assume shop welding and grade of steel Fe 410.	L3	CO2	7 M
		UNIT-III			
5	A 3	3 m long Tension Member of bottom chord	L3	CO3	14 M
		a roof truss is to carry a factored tensile load			
	of 2	250 kN. Use Fe410 grade of steel. The bolts			

			1	
	to be used are of grade 4.6 and of 20 mm diameter.			
	i) Design a Tension Member for the bottom			
	chord. The section should consist of single angle			
	and is subjected to reversal of stresses due to the			
	action of wind and design the bolted connections			
	for the member.			
	ii) Check the member considered is safe against			
	the load applied.			
	OR			
6	A tension member 0.95 m long is to resist a	L3	CO3	14 M
	service dead load of 20 kN and a service live			
	load of 60 kN. Design a rectangular bar of			
	standard structural steel of grade Fe 410.			
	Assume that the member is connected by one			
	line of 16 mm diameter bolts of grade 4.6.			
	<u> </u>			
	UNIT-IV			
7	In a technical steel building for a heavy industry,	L3	CO4	14 M
,	design a Built-up column with two channels	LJ		1 - 111
	back to back along with lacing system of column			
	length 10 m subjected to carry an axial factored			
	load of 1350 kN. The columns are restrained in			
	position but not in direction at both ends.			
	Assume steel of grade Fe 410 and bolts of grade			
	4.6.			
	i) Design Compression Built-up section for the			
	given load.			
	ii) Evaluate the spacing between the channels			
	and dimensions of the lacing system and design			

		OR				
8	a)	A column in a building is to be retrofitted	L3	CO4	7 M	
		for enhancement of the load. Determine the				
		axial load capacity for the column section in				
		compression for $y \rightarrow y$				
		a built up of				
		shape shown in → ← 20 mm				
		Fig. for the data				
		indicated ^z 500 mm z				
		against the				
		figure.				
		End conditions: y 30 mm				
		Both ends 300 mm				
		restrained in				
		direction and position.				
		$f_y = 250 \text{ MPa}$				
		L = 6.0 m				
		$t_{\rm w} = 20 \text{ mm}$ $t_{\rm w} = 20 \text{ mm}$				
		$t_f = 30 \text{ mm}$				
	b)	$\gamma_{ml} = 1.50$ Design a column to support a factored load	L3	CO4	7 M	
	0)	of 1050 kN. The column has an effective	LJ	04	/ 11/1	
		length of 7.0 m with respect to z-axis and				
		5.0 m with respect to y-axis. Use steel of				
		grade Fe 410.				
	<u> </u>	0		<u> </u>		
UNIT-V						
9	Δς	simply supported steel joist of 4.0 m effective	L3	CO5	14 M	
		n is laterally supported throughout. It carries			1 - 1 11	
	-	otal uniformly distributed load of 10 kN/m				
		clusive of self-weight). Design an appropriate				
	`	tion using steel of grade Fe 410.				
L						

	OP				
10	OR Design a steel beam section for supporting roof of a big hall for the following data and apply the usual checks. Assume steel of grade Fe 410. Clear Span: 6.5 m End bearings: 150 mm c/c spacing of beams: 3 m Imposed load on the beam: 10 kN/m ² Dead load (inclusive of self-weight): 4 kN/m ² Restriction on beam depth: 375 mm The compression flange of the beam is laterally	L3	CO5	14 M	
	supported throughout.				